公共管理与政策评论 ›› 2024, Vol. 13 ›› Issue (3): 152-.

• 论文 • 上一篇    

预测干部容错:效率考量、合法性压力与领导特征——基于机器学习方法的预测建模

  

  • 出版日期:2024-05-17 发布日期:2024-05-06

Predicting the Diffusion Logic of the Cadre Fault-tolerant Mechanism: Efficiency, Legitimacy, and Leadership——Predictive Modeling Based on Machine Learning#br#

  • Online:2024-05-17 Published:2024-05-06

摘要:

国家对于干部容错机制的诉求愈发强烈,但是近年来该政策在国内的扩散速度逐步放缓。要解决上述问题,关键在于研究干部容错机制的扩散逻辑。在政策创新扩散逻辑相关研究中,既有研究方法大多遵循 “样本内解释”的思路。这使得相关研究结论的科学性,尤其是泛化能力,难以得到保证。为突破这一局限,本文采用 “样本外预测”的思路来探索干部容错机制的扩散逻辑。具体来看,本文基于政策创新扩散理论构建了分析框架,使用机器学习方法训练了地方政府采纳干部容错机制的预测模型,并在确保模型预测性能的前提下呈现干部容错机制的扩散逻辑。模型解读结果表明,干部容错机制的扩散主要由行动者逻辑主导,其次是效率逻辑,最后是合法性逻辑;效率逻辑、合法性逻辑及行动者逻辑三个维度中,最具影响力的特征分别为治理规模、同级采纳和主官任期。地方政府采纳干部容错机制的概率与治理规模具有负向关系,与同级采纳具有正向关系,与主官任期具有倒 U形关系。为推进干部容错机制有序发展,本文建议地方政府强化机制扩散中的领导驱动效应、科学规划干部容错机制扩散路径。

关键词: 干部容错机制, 政策创新扩散, 机器学习, 预测建模

Abstract:

The national government has been increasingly vocal about the cadre fault-tolerant mechanism (CFTM), however, the spread of this policy in China has gradually slowed down in recent years. To solve the above problems, the key is to study the diffusion logic of CFTM. In the research on the diffusion logic of policy innovation, most research methods generally follow the "within-sample explanation" approach. This makes it difficult to ensure the scientific validity, especially the generalizability, of the research conclusions. To overcome this limitation, this paper adopts the "out-of-sample prediction" approach to explore the diffusion logic of CFTM. Specifically, based on the policy innovation diffusion theory, this paper constructs an analytical framework, uses machine learning methods to train a predictive model for local governments adopting CFTM, and presents the diffusion logic of CFTM while ensuring the predictive performance of the model. The model interpretation results reveal that the diffusion of CFTM is mainly dominated by actor logic, followed by efficiency logic and legitimacy logic. . Among the three dimensions of efficiency logic, legitimacy logic, and actor logic, the most influential features are governance scale, peer adoption, and the tenure of the top leader, respectively. The probability of local governments adopting CFTM is negatively related to governance scale, positively related to peer adoption, and has an inverted U-shaped relationship with the tenure of the top leader. To promote the orderly development of CFTM, this paper suggests that local governments strengthen the leadership-driven effect in the diffusion of CFTM and scientifically plan the diffusion path of CFTM. 

Key words: Cadre Fault-tolerant Mechanism, Policy Innovation and Diffusion, , Machine Learning, Predictive Modeling